首页> 外文OA文献 >Social Network Analysis Inspired Content Placement with QoS in Cloud-based Content Delivery Networks
【2h】

Social Network Analysis Inspired Content Placement with QoS in Cloud-based Content Delivery Networks

机译:社交网络分析灵感来自内容的内容放置   基于云的内容交付网络

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

Content Placement (CP) problem in Cloud-based Content Delivery Networks(CCDNs) leverage resource elasticity to build cost effective CDNs thatguarantee QoS. In this paper, we present our novel CP model, which optimallyplaces content on surrogates in the cloud, to achieve (a) minimum cost ofleasing storage and bandwidth resources for data coming into and going out ofthe cloud zones and regions, (b) guarantee Service Level Agreement (SLA), and(c) minimize degree of QoS violations. The CP problem is NP-Hard, hence wedesign a unique push-based heuristic, called Weighted Social Network Analysis(W-SNA) for CCDN providers. W-SNA is based on Betweeness Centrality (BC) fromSNA and prioritizes surrogates based on their relationship to the othervertices in the network graph. To achieve our unique objectives, we furtherprioritize surrogates based on weights derived from storage cost and contentrequests. We compare our heuristic to current state of the art Greedy Site (GS)and purely Social Network Analysis (SNA) heuristics, which are relevant to ourwork. We show that W-SNA outperforms GS and SNA in minimizing cost and QoS.Moreover, W-SNA guarantees SLA but also minimizes the degree of QoS violations.To the best of our knowledge, this is the first model and heuristic of itskind, which is timely and gives a fundamental pre-allocation scheme for futureonline and dynamic resource provision for CCDNs.
机译:基于云的内容交付网络(CCDN)中的内容放置(CP)问题利用资源弹性来构建具有成本效益的CDN,以保证QoS。在本文中,我们介绍了我们新颖的CP模型,该模型将内容最佳地放置在云中的替代项上,以实现(a)降低存储进出云区域和区域的数据的存储和带宽资源的最低成本,(b)保证服务级别协议(SLA),以及(c)最小化违反QoS的程度。 CP问题是NP-Hard,因此我们为CCDN提供者设计了一种独特的基于推送的启发式方法,称为加权社交网络分析(W-SNA)。 W-SNA基于SNA的betweeness中心性(BC),并根据代理与网络图中其他顶点的关系对代理进行优先级排序。为了实现我们的独特目标,我们根据存储成本和内容请求的权重进一步对代理进行优先级排序。我们将我们的启发式方法与当前最先进的贪婪站点(GS)和纯粹的社交网络分析(SNA)启发式方法进行比较,它们与我们的工作相关。我们证明W-SNA在最小化成本和QoS方面优于GS和SNA,而且W-SNA在保证SLA的同时还最大程度地减少了QoS违规的程度。是及时的,并为CCDN的Futureonline和动态资源提供基本的预分配方案。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号